Scan2LoD3: Reconstructing semantic 3D building models at LoD3 using ray casting and Bayesian networks

Olaf Wysocki, Yan Xia, Magdalena Wysocki, Eleonora Grilli, Ludwig Hoegner, Daniel Cremers, Uwe Stilla

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

10 Zitate (Scopus)

Abstract

Reconstructing semantic 3D building models at the level of detail (LoD) 3 is a long-standing challenge. Unlike mesh-based models, they require watertight geometry and object-wise semantics at the façade level. The principal challenge of such demanding semantic 3D reconstruction is reliable façade-level semantic segmentation of 3D input data. We present a novel method, called Scan2LoD3, that accurately reconstructs semantic LoD3 building models by improving façade-level semantic 3D segmentation. To this end, we leverage laser physics and 3D building model priors to probabilistically identify model conflicts. These probabilistic physical conflicts propose locations of model openings: Their final semantics and shapes are inferred in a Bayesian network fusing multimodal probabilistic maps of conflicts, 3D point clouds, and 2D images. To fulfill demanding LoD3 requirements, we use the estimated shapes to cut openings in 3D building priors and fit semantic 3D objects from a library of façade objects. Extensive experiments on the TUM city campus datasets demonstrate the superior performance of the proposed Scan2LoD3 over the state-of-the-art methods in façade-level detection, semantic segmentation, and LoD3 building model reconstruction. We believe our method can foster the development of probability-driven semantic 3D reconstruction at LoD3 since not only the high-definition reconstruction but also reconstruction confidence becomes pivotal for various applications such as autonomous driving and urban simulations.

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
Herausgeber (Verlag)IEEE Computer Society
Seiten6548-6558
Seitenumfang11
ISBN (elektronisch)9798350302493
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023 - Vancouver, Kanada
Dauer: 18 Juni 202322 Juni 2023

Publikationsreihe

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Band2023-June
ISSN (Print)2160-7508
ISSN (elektronisch)2160-7516

Konferenz

Konferenz2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
Land/GebietKanada
OrtVancouver
Zeitraum18/06/2322/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Scan2LoD3: Reconstructing semantic 3D building models at LoD3 using ray casting and Bayesian networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren