Scalable simulation of nonequilibrium quantum dynamics via classically optimized unitary circuits

Luke Causer, Felix Jung, Asimpunya Mitra, Frank Pollmann, Adam Gammon-Smith

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

The advent of near-term digital quantum computers could offer us an exciting opportunity to investigate quantum many-body phenomena beyond that of classical computing. To make the best use of the hardware available, it is paramount that we have methods that accurately simulate Hamiltonian dynamics for limited circuit depths. In this paper, we propose a method to classically optimize unitary brickwall circuits to approximate quantum time evolution operators. Our method is scalable in system size through the use of tensor networks. We demonstrate that, for various three-body Hamiltonians, our approach produces quantum circuits that can outperform trotterization in both their accuracy and the quantum circuit depth needed to implement the dynamics, with the exact details being dependent on the Hamiltonian. We also explain how to choose an optimal time step that minimizes the combined errors of the quantum device and the brickwall circuit approximation.

OriginalspracheEnglisch
Aufsatznummer033062
FachzeitschriftPhysical Review Research
Jahrgang6
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - Juni 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Scalable simulation of nonequilibrium quantum dynamics via classically optimized unitary circuits“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren