Scalable and interpretable product recommendations via overlapping co-clustering

Reinhard Heckel, Michail Vlachos, Thomas Parnell, Celestine Duenner

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

47 Zitate (Scopus)

Abstract

We consider the problem of generating interpretable recommendations by identifying overlapping co-clusters of clients and products, based only on positive or implicit feedback. Our approach is applicable on very large datasets because it exhibits almost linear complexity in the input examples and the number of co-clusters. We show, both on real industrial data and on publicly available datasets, that the recommendation accuracy of our algorithm is competitive to that of state-of-Art matrix factorization techniques. In addition, our technique has the advantage of offering recommendations that are textually and visually interpretable. Finally, we examine how to implement our technique efficiently on Graphical Processing Units (GPUs).

OriginalspracheEnglisch
TitelProceedings - 2017 IEEE 33rd International Conference on Data Engineering, ICDE 2017
Herausgeber (Verlag)IEEE Computer Society
Seiten1033-1044
Seitenumfang12
ISBN (elektronisch)9781509065431
DOIs
PublikationsstatusVeröffentlicht - 16 Mai 2017
Extern publiziertJa
Veranstaltung33rd IEEE International Conference on Data Engineering, ICDE 2017 - San Diego, USA/Vereinigte Staaten
Dauer: 19 Apr. 201722 Apr. 2017

Publikationsreihe

NameProceedings - International Conference on Data Engineering
ISSN (Print)1084-4627

Konferenz

Konferenz33rd IEEE International Conference on Data Engineering, ICDE 2017
Land/GebietUSA/Vereinigte Staaten
OrtSan Diego
Zeitraum19/04/1722/04/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Scalable and interpretable product recommendations via overlapping co-clustering“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren