Scalability of Distributed Intelligence Architecture for 6G Network Automation

Sayantini Majumdar, Riccardo Trivisonno, Georg Carle

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

Distributed automation is expected to play a significant role in the management of 6G networks, as it avoids the drawbacks of a single point of failure and signaling overhead inherent in a centralized paradigm. However, the issue of conflicts is intrinsic to a distributed architecture and when left unaddressed, may severely impair system KPIs. Considering the conflict problem, it is unclear if distributed automation would be scalable to realize the potential of 6G networks. In this paper, we validate the scalability of distributed intelligence, specifically based on Q-Learning, Q-Learning for Cooperation (QLC), consisting of intelligent agents that learn to cooperate on a discrete state space. Results show that the performance of QLC is scalable when compared to the optimal, computed by a centralized solution. Scalability may be limited by the convergence time that increases with the number of agents and the size of the discrete state space. The cooperation overhead is also not critical. These findings indicate that QLC is promising and may be applied to other use cases if the speed of convergence is not a significant detriment in distributing intelligence in 6G.

OriginalspracheEnglisch
TitelICC 2022 - IEEE International Conference on Communications
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2321-2326
Seitenumfang6
ISBN (elektronisch)9781538683477
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE International Conference on Communications, ICC 2022 - Seoul, Südkorea
Dauer: 16 Mai 202220 Mai 2022

Publikationsreihe

NameIEEE International Conference on Communications
Band2022-May
ISSN (Print)1550-3607

Konferenz

Konferenz2022 IEEE International Conference on Communications, ICC 2022
Land/GebietSüdkorea
OrtSeoul
Zeitraum16/05/2220/05/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Scalability of Distributed Intelligence Architecture for 6G Network Automation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren