Sampling Strategies for Compressive Imaging Under Statistical Noise

Frederik Hoppe, Felix Krahmer, Claudio Mayrink Verdun, Marion I. Menzel, Holger Rauhut

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Most of the compressive sensing literature in signal processing assumes that the noise present in the measurement has an adversarial nature, i.e., it is bounded in a certain norm. At the same time, the randomization introduced in the sampling scheme usually assumes an i.i.d. model where rows are sampled with replacement. In this case, if a sample is measured a second time, it does not add additional information. For many applications, where the statistical noise model is a more accurate one, this is not true anymore since a second noisy sample comes with an independent realization of the noise, so there is a fundamental difference between sampling with and without replacement. Therefore, a more careful analysis must be performed. In this short note, we illustrate how one can mathematically transition between these two noise models. This transition gives rise to a weighted LASSO reconstruction method for sampling without replacement, which numerically improves the solution of high-dimensional compressive imaging problems.

OriginalspracheEnglisch
Titel2023 International Conference on Sampling Theory and Applications, SampTA 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350328851
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 International Conference on Sampling Theory and Applications, SampTA 2023 - New Haven, USA/Vereinigte Staaten
Dauer: 10 Juli 202314 Juli 2023

Publikationsreihe

Name2023 International Conference on Sampling Theory and Applications, SampTA 2023

Konferenz

Konferenz2023 International Conference on Sampling Theory and Applications, SampTA 2023
Land/GebietUSA/Vereinigte Staaten
OrtNew Haven
Zeitraum10/07/2314/07/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Sampling Strategies for Compressive Imaging Under Statistical Noise“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren