Safe Reinforcement Learning with Probabilistic Guarantees Satisfying Temporal Logic Specifications in Continuous Action Spaces

Hanna Krasowski, Prithvi Akella, Aaron D. Ames, Matthias Althoff

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Vanilla Reinforcement Learning (RL) can efficiently solve complex tasks but does not provide any guarantees on system behavior. To bridge this gap, we propose a three- step safe RL procedure for continuous action spaces that provides probabilistic guarantees with respect to temporal logic specifications. First, our approach probabilistically verifies a candidate controller with respect to a temporal logic specification while randomizing the control inputs to the system within a bounded set. Second, we improve the performance of this probabilistically verified controller by adding an RL agent that optimizes the verified controller for performance in the same bounded set around the control input. Third, we verify probabilistic safety guarantees with respect to temporal logic specifications for the learned agent. Our approach is efficiently implementable for continuous action and state spaces. The separation of safety verification and performance improvement into two distinct steps realizes both explicit probabilistic safety guarantees and a straightforward RL setup that focuses on performance. We evaluate our approach on an evasion task where a robot has to reach a goal while evading a dynamic obstacle with a specific maneuver. Our results show that our safe RL approach leads to efficient learning while maintaining its probabilistic safety specification.

OriginalspracheEnglisch
Titel2023 62nd IEEE Conference on Decision and Control, CDC 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten4372-4378
Seitenumfang7
ISBN (elektronisch)9798350301243
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung62nd IEEE Conference on Decision and Control, CDC 2023 - Singapore, Singapur
Dauer: 13 Dez. 202315 Dez. 2023

Publikationsreihe

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (elektronisch)2576-2370

Konferenz

Konferenz62nd IEEE Conference on Decision and Control, CDC 2023
Land/GebietSingapur
OrtSingapore
Zeitraum13/12/2315/12/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Safe Reinforcement Learning with Probabilistic Guarantees Satisfying Temporal Logic Specifications in Continuous Action Spaces“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren