Safe Reinforcement Learning via Confidence-Based Filters

Sebastian Curi, Armin Lederer, Sandra Hirche, Andreas Krause

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Ensuring safety is a crucial challenge when deploying reinforcement learning (RL) to real-world systems. We develop confidence-based safety filters, a control-theoretic approach for certifying state safety constraints for nominal policies learnt via standard RL techniques, based on probabilistic dynamics models. Our approach is based on a reformulation of state constraints in terms of cost functions, reducing safety verification to a standard RL task. By exploiting the concept of hallucinating inputs, we extend this formulation to determine a "backup"policy which is safe for the unknown system with high probability. The nominal policy is minimally adjusted at every time step during a roll-out towards the backup policy, such that safe recovery can be guaranteed afterwards. We provide formal safety guarantees, and empirically demonstrate the effectiveness of our approach.

OriginalspracheEnglisch
Titel2022 IEEE 61st Conference on Decision and Control, CDC 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3409-3415
Seitenumfang7
ISBN (elektronisch)9781665467612
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung61st IEEE Conference on Decision and Control, CDC 2022 - Cancun, Mexiko
Dauer: 6 Dez. 20229 Dez. 2022

Publikationsreihe

NameProceedings of the IEEE Conference on Decision and Control
Band2022-December
ISSN (Print)0743-1546
ISSN (elektronisch)2576-2370

Konferenz

Konferenz61st IEEE Conference on Decision and Control, CDC 2022
Land/GebietMexiko
OrtCancun
Zeitraum6/12/229/12/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Safe Reinforcement Learning via Confidence-Based Filters“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren