Safe Learning-Based Control of Elastic Joint Robots via Control Barrier Functions

Armin Lederer, Azra Begzadic, Neha Das, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Ensuring safety is of paramount importance in physical human-robot interaction applications. This requires both adherence to safety constraints defined on the system state, as well as guaranteeing compliant behavior of the robot. If the underlying dynamical system is known exactly, the former can be addressed with the help of control barrier functions. The incorporation of elastic actuators in the robot's mechanical design can address the latter requirement. However, this elasticity can increase the complexity of the resulting system, leading to unmodeled dynamics, such that control barrier functions cannot directly ensure safety. In this paper, we mitigate this issue by learning the unknown dynamics using Gaussian process regression. By employing the model in a feedback linearizing control law, the safety conditions resulting from control barrier functions can be robustified to take into account model errors, while remaining feasible. In order to enforce them on-line, we formulate the derived safety conditions in the form of a second-order cone program. We demonstrate our proposed approach with simulations on a two-degree-of-freedom planar robot with elastic joints.

OriginalspracheEnglisch
TitelIFAC-PapersOnLine
Redakteure/-innenHideaki Ishii, Yoshio Ebihara, Jun-ichi Imura, Masaki Yamakita
Herausgeber (Verlag)Elsevier B.V.
Seiten2250-2256
Seitenumfang7
Auflage2
ISBN (elektronisch)9781713872344
DOIs
PublikationsstatusVeröffentlicht - 1 Juli 2023
Veranstaltung22nd IFAC World Congress - Yokohama, Japan
Dauer: 9 Juli 202314 Juli 2023

Publikationsreihe

NameIFAC-PapersOnLine
Nummer2
Band56
ISSN (elektronisch)2405-8963

Konferenz

Konferenz22nd IFAC World Congress
Land/GebietJapan
OrtYokohama
Zeitraum9/07/2314/07/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Safe Learning-Based Control of Elastic Joint Robots via Control Barrier Functions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren