Runtime Monitoring DNN-Based Perception: (via the Lens of Formal Methods)

Chih Hong Cheng, Michael Luttenberger, Rongjie Yan

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Deep neural networks (DNNs) are instrumental in realizing complex perception systems. As many of these applications are safety-critical by design, engineering rigor is required to ensure that the functional insufficiency of the DNN-based perception is not the source of harm. In addition to conventional static verification and testing techniques employed during the design phase, there is a need for runtime verification techniques that can detect critical events, diagnose issues, and even enforce requirements. This tutorial aims to provide readers with a glimpse of techniques proposed in the literature. We start with classical methods proposed in the machine learning community, then highlight a few techniques proposed by the formal methods community. While we surely can observe similarities in the design of monitors, how the decision boundaries are created vary between the two communities. We conclude by highlighting the need to rigorously design monitors, where data availability outside the operational domain plays an important role.

OriginalspracheEnglisch
TitelRuntime Verification - 23rd International Conference, RV 2023, Proceedings
Redakteure/-innenPanagiotis Katsaros, Laura Nenzi
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten428-446
Seitenumfang19
ISBN (Print)9783031442667
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung23rd International Conference on Runtime Verification, RV 2023 - Thessaloniki, Griechenland
Dauer: 3 Okt. 20236 Okt. 2023

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band14245 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz23rd International Conference on Runtime Verification, RV 2023
Land/GebietGriechenland
OrtThessaloniki
Zeitraum3/10/236/10/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Runtime Monitoring DNN-Based Perception: (via the Lens of Formal Methods)“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren