Row-action methods for compressed sensing

Suvrit Sra, Joel A. Tropp

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

10 Zitate (Scopus)

Abstract

Compressed Sensing uses a small number of random, linear measurements to acquire a sparse signal. Nonlinear algorithms, such as ℓ1 minimization, are used to reconstruct the signal from the measured data. This paper proposes row-action methods as a computational approach to solving the ℓ1 optimization problem. This paper presents a specific row-action method and provides extensive empirical evidence that it is an effective technique for signal reconstruction. This approach offers several advantages over interior-point methods, including minimal storage and computational requirements, scalability, and robustness.

OriginalspracheEnglisch
Titel2006 IEEE International Conference on Acoustics, Speech, and Signal Processing - Proceedings
SeitenIII868-III871
PublikationsstatusVeröffentlicht - 2006
Extern publiziertJa
Veranstaltung2006 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006 - Toulouse, Frankreich
Dauer: 14 Mai 200619 Mai 2006

Publikationsreihe

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Band3
ISSN (Print)1520-6149

Konferenz

Konferenz2006 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006
Land/GebietFrankreich
OrtToulouse
Zeitraum14/05/0619/05/06

Fingerprint

Untersuchen Sie die Forschungsthemen von „Row-action methods for compressed sensing“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren