Abstract
We consider a spinning charge coupled to the Maxwell field. Through the appropriate symmetry in the initial conditions the charge remains at rest. We establish that any time-dependent finite energy solution converges to a sum of a soliton wave and an outgoing free wave. The convergence holds in global energy norm. Under a small constant external magnetic field the soliton manifold is stable in local energy seminorms and the evolution of the angular velocity is guided by an effective finite-dimensional dynamics. The proof uses a non-autonomous integral inequality method.
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 143-156 |
| Seitenumfang | 14 |
| Fachzeitschrift | Monatshefte fur Mathematik |
| Jahrgang | 142 |
| Ausgabenummer | 1-2 |
| DOIs | |
| Publikationsstatus | Veröffentlicht - 2004 |