Abstract
We utilized spin Hall magnetoresistance (SMR) measurements to experimentally investigate pure spin current transport in thin film heterostructures of nickel ferrite (NiFe2O4,NFO) and normal metals (NM) Ta and Pt. We grew (001)-oriented NFO thin films by pulsed laser deposition on lattice-matched magnesium gallate (MgGa2O4) substrates, thereby significantly improving their magnetic and structural properties. We performed SMR measurements at room temperature in patterned Hall bar structures for charge currents applied in the [100]-and [110]-directions of NFO. We found that the extracted SMR magnitude for NFO/Pt heterostructures depends crucially on the Pt resistivity of the investigated Hall bar structure. We further study this resistivity scaling of the SMR effect at different temperatures for NFO/Pt. Our results suggest that the spin mixing conductance of the NFO/Pt interface and the Pt resistivity depend on the interface quality and thus a correlation between these two quantities exists.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 092403 |
Fachzeitschrift | Applied Physics Letters |
Jahrgang | 115 |
Ausgabenummer | 9 |
DOIs | |
Publikationsstatus | Veröffentlicht - 26 Aug. 2019 |