TY - JOUR
T1 - Role of excited-state hydrogen detachment and hydrogen-transfer processes for the excited-state deactivation of an aromatic dipeptide
T2 - N-acetyl tryptophan methyl amide
AU - Shemesh, Dorit
AU - Sobolewski, Andrzej L.
AU - Domcke, Wolfgang
PY - 2010
Y1 - 2010
N2 - The excited-state electronic potential-energy surfaces of the three conformers of the capped dipeptide N-acetyl tryptophan methyl amide (NATMA), for which UV and IR spectra have been reported by Dian et al. [J. Chem. Phys., 2003, 118, 2696], have been explored with ab initio electronic-structure methods. The results provide insight into the nonadiabatic electronic coupling mechanisms which are responsible for the pronounced and conformer-specific perturbations of the spectra, such as broad and congested UV spectra as well as the deletion of certain fundamentals in the IR spectrum of the S1 state. It is shown that the photophysical dynamics of NATMA is governed by at least five excited singlet electronic states: the two spectroscopic 1Lb and 1La states and the dissociative 1πσ* state of the indole chromophore, as well as a locally-excited state and a charge-transfer state of the peptide backbone. For the conformer NATMA C, which exhibits a γ-turn of the backbone, a potentially very efficient excited-state deactivation mechanism to the electronic ground state via three conical intersections has been revealed. The results confirm the important role of hydrogen bonds for rapid excited-state deactivation of peptides, which enhances their photostability.
AB - The excited-state electronic potential-energy surfaces of the three conformers of the capped dipeptide N-acetyl tryptophan methyl amide (NATMA), for which UV and IR spectra have been reported by Dian et al. [J. Chem. Phys., 2003, 118, 2696], have been explored with ab initio electronic-structure methods. The results provide insight into the nonadiabatic electronic coupling mechanisms which are responsible for the pronounced and conformer-specific perturbations of the spectra, such as broad and congested UV spectra as well as the deletion of certain fundamentals in the IR spectrum of the S1 state. It is shown that the photophysical dynamics of NATMA is governed by at least five excited singlet electronic states: the two spectroscopic 1Lb and 1La states and the dissociative 1πσ* state of the indole chromophore, as well as a locally-excited state and a charge-transfer state of the peptide backbone. For the conformer NATMA C, which exhibits a γ-turn of the backbone, a potentially very efficient excited-state deactivation mechanism to the electronic ground state via three conical intersections has been revealed. The results confirm the important role of hydrogen bonds for rapid excited-state deactivation of peptides, which enhances their photostability.
UR - http://www.scopus.com/inward/record.url?scp=77951956843&partnerID=8YFLogxK
U2 - 10.1039/b927024h
DO - 10.1039/b927024h
M3 - Article
C2 - 20445897
AN - SCOPUS:77951956843
SN - 1463-9076
VL - 12
SP - 4899
EP - 4905
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 19
ER -