ROCA: Robust CAD Model Retrieval and Alignment from a Single Image

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

26 Zitate (Scopus)

Abstract

We present ROCA 11The code is made available at https://github.com/cangurneli/ROCA., a novel end-to-end approach that re-trieves and aligns 3D CAD models from a shape database to a single input image. This enables 3D perception of an ob-served scene from a 2D RGB observation, characterized as a lightweight, compact, clean CAD representation. Core to our approach is our differentiable alignment optimization based on dense 2D-3D object correspondences and Pro-crustes alignment. ROCA can thus provide a robust CAD alignment while simultaneously informing CAD retrieval by leveraging the 2D-3D correspondences to learn geometri-cally similar CAD models. Experiments on challenging, real-world imagery from ScanNet show that ROCA signif-icantly improves on state of the art, from 9.5% to 17.6% in retrieval-aware CAD alignment accuracy.

OriginalspracheEnglisch
TitelProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Herausgeber (Verlag)IEEE Computer Society
Seiten4012-4021
Seitenumfang10
ISBN (elektronisch)9781665469463
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, USA/Vereinigte Staaten
Dauer: 19 Juni 202224 Juni 2022

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Band2022-June
ISSN (Print)1063-6919

Konferenz

Konferenz2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Land/GebietUSA/Vereinigte Staaten
OrtNew Orleans
Zeitraum19/06/2224/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „ROCA: Robust CAD Model Retrieval and Alignment from a Single Image“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren