Robustness of attractor networks and an improved convex corner detector

P. Nachbar, A. J. Schuler, T. Füssl, J. A. Nossek, L. O. Chua

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

By defining several notions of robustness for an attractor network, we aie able to augment previous results about the AdaTron algorithm by explicit values for the robustness of the optimal weights. We show, that the symmetry of a problem is reflected by the invariance of the optimal weights. This enables us to deduce that a convex coiner detection, using a discrete-time Cellular Neural Network (DTCNN), can not be accomplished with just one clock cycle, and we propose an improved convex corner detector.

OriginalspracheEnglisch
TitelProceedings - 2nd International Workshop on Cellular Neural Networks and their Applications, CNNA 1992
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten55-61
Seitenumfang7
ISBN (elektronisch)0780308751, 9780780308756
DOIs
PublikationsstatusVeröffentlicht - 1992
Veranstaltung2nd International Workshop on Cellular Neural Networks and their Applications, CNNA 1992 - Munich, Deutschland
Dauer: 14 Okt. 199216 Okt. 1992

Publikationsreihe

NameProceedings - 2nd International Workshop on Cellular Neural Networks and their Applications, CNNA 1992

Konferenz

Konferenz2nd International Workshop on Cellular Neural Networks and their Applications, CNNA 1992
Land/GebietDeutschland
OrtMunich
Zeitraum14/10/9216/10/92

Fingerprint

Untersuchen Sie die Forschungsthemen von „Robustness of attractor networks and an improved convex corner detector“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren