Robust Two-Stage Transport Data Imputation with Changepoint Detection and Tucker Decomposition

Cheng Lyu, Qing Long Lu, Xinhua Wu, Constantinos Antoniou

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Transport data is an essential resource for understanding traffic patterns and informing transport planning and policy. However, data-driven transportation research is often haunted by the prevalent issue of missing data, which can significantly impact the accuracy and reliability of data analysis. Despite extensive efforts in developing effective data imputation models, it is found that their results can deteriorate when faced with complex missing patterns and high non-stationarity of time series. To address these issues, we propose a two-stage imputation framework with changepoint detection and Tucker decomposition. Time series decomposition is embedded in the proposed framework to capture the temporal characteristics of transport time series. Experiment results demonstrate that our proposed method outperforms state-of-the-art methods in various challenging missing scenarios.

OriginalspracheEnglisch
Titel2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten494-499
Seitenumfang6
ISBN (elektronisch)9798350399462
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023 - Bilbao, Spanien
Dauer: 24 Sept. 202328 Sept. 2023

Publikationsreihe

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
ISSN (Print)2153-0009
ISSN (elektronisch)2153-0017

Konferenz

Konferenz26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023
Land/GebietSpanien
OrtBilbao
Zeitraum24/09/2328/09/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Robust Two-Stage Transport Data Imputation with Changepoint Detection and Tucker Decomposition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren