Robust Predictive Control of 3L-NPC Converter Fed PMSM Drives for Electrical Car Applications

Zhenbin Zhang, Jose Rodriguez, Ralph Kennel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

Permanent-magnet synchronous motor (PMSM) fed by three-level neutral-point-clamped (3L-NPC) voltage source power converter is an attractive configuration for highperformance electrical car systems. For such topology, finite control set model predictive control (FCS-MPC) is a very promising alternative. However, due to its fully model-based concept, variations of system parameter (in particular, the stator inductance and rotor permanent-flux linkage) will affect the system control performances. In this work, a robust FCS predictive current control (PCC) method with revised predictions is proposed and validated. Experimental results reveal that with the proposed solution not only the system robustness against parameter variations is improved, but also the control variable ripples are evidently reduced in comparison with the conventional solution. The proposed method has been implemented with a fully FPGA based real-time hardware and tested at a lab-constructed test-bench.

OriginalspracheEnglisch
Titel2018 IEEE Energy Conversion Congress and Exposition, ECCE 2018
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten5204-5208
Seitenumfang5
ISBN (elektronisch)9781479973118
DOIs
PublikationsstatusVeröffentlicht - 3 Dez. 2018
Veranstaltung10th Annual IEEE Energy Conversion Congress and Exposition, ECCE 2018 - Portland, USA/Vereinigte Staaten
Dauer: 23 Sept. 201827 Sept. 2018

Publikationsreihe

Name2018 IEEE Energy Conversion Congress and Exposition, ECCE 2018

Konferenz

Konferenz10th Annual IEEE Energy Conversion Congress and Exposition, ECCE 2018
Land/GebietUSA/Vereinigte Staaten
OrtPortland
Zeitraum23/09/1827/09/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Robust Predictive Control of 3L-NPC Converter Fed PMSM Drives for Electrical Car Applications“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren