Robust odometry estimation for RGB-D cameras

Christian Kerl, Jurgen Sturm, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

494 Zitate (Scopus)

Abstract

The goal of our work is to provide a fast and accurate method to estimate the camera motion from RGB-D images. Our approach registers two consecutive RGB-D frames directly upon each other by minimizing the photometric error. We estimate the camera motion using non-linear minimization in combination with a coarse-to-fine scheme. To allow for noise and outliers in the image data, we propose to use a robust error function that reduces the influence of large residuals. Furthermore, our formulation allows for the inclusion of a motion model which can be based on prior knowledge, temporal filtering, or additional sensors like an IMU. Our method is attractive for robots with limited computational resources as it runs in real-time on a single CPU core and has a small, constant memory footprint. In an extensive set of experiments carried out both on a benchmark dataset and synthetic data, we demonstrate that our approach is more accurate and robust than previous methods. We provide our software under an open source license.

OriginalspracheEnglisch
Titel2013 IEEE International Conference on Robotics and Automation, ICRA 2013
Seiten3748-3754
Seitenumfang7
DOIs
PublikationsstatusVeröffentlicht - 2013
Veranstaltung2013 IEEE International Conference on Robotics and Automation, ICRA 2013 - Karlsruhe, Deutschland
Dauer: 6 Mai 201310 Mai 2013

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Konferenz

Konferenz2013 IEEE International Conference on Robotics and Automation, ICRA 2013
Land/GebietDeutschland
OrtKarlsruhe
Zeitraum6/05/1310/05/13

Fingerprint

Untersuchen Sie die Forschungsthemen von „Robust odometry estimation for RGB-D cameras“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren