Robust MEG source localization of event related potentials: Identifying relevant sources by non-Gaussianity

Peter Breun, Moritz Grosse-Wentrup, Wolfgang Utschick, Martin Buss

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Independent Component Analysis (ICA) is a frequently used preprocessing step in source localization of MEG and EEC data. By decomposing the measured data into maximally independent components (ICs), estimates of the time course and the topographies of neural sources are obtained. In this paper, we show that when using estimated source topographies for localization, correlations between neural sources introduce an error into the obtained source locations. This error can be avoided by reprojecting ICs onto the observation space, but requires the identification of relevant ICs. For Event Related Potentials (ERPs), we identify relevant ICs by estimating their non-Gaussianity. The efficacy of the approach is tested on auditory evoked potentials (AEPs) recorded by MEG. It is shown that ten trials are sufficient for reconstructing all important characteristics of the AEP, and source localization of the reconstructed ERP yields the same focus of activity as the average of 250 trials.

OriginalspracheEnglisch
TitelPattern Recognition - 28th DAGM Symposium, Proceedings
Herausgeber (Verlag)Springer Verlag
Seiten394-403
Seitenumfang10
ISBN (Print)3540444122, 9783540444121
DOIs
PublikationsstatusVeröffentlicht - 2006
Veranstaltung28th Symposium of the German Association for Pattern Recognition, DAGM 2006 - Berlin, Deutschland
Dauer: 12 Sept. 200614 Sept. 2006

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band4174 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz28th Symposium of the German Association for Pattern Recognition, DAGM 2006
Land/GebietDeutschland
OrtBerlin
Zeitraum12/09/0614/09/06

Fingerprint

Untersuchen Sie die Forschungsthemen von „Robust MEG source localization of event related potentials: Identifying relevant sources by non-Gaussianity“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren