9 Zitate (Scopus)

Abstract

Motivation: Disease module mining methods (DMMMs) extract subgraphs that constitute candidate disease mechanisms from molecular interaction networks such as protein-protein interaction (PPI) networks. Irrespective of the employed models, DMMMs typically include non-robust steps in their workflows, i.e. the computed subnetworks vary when running the DMMMs multiple times on equivalent input. This lack of robustness has a negative effect on the trustworthiness of the obtained subnetworks and is hence detrimental for the widespread adoption of DMMMs in the biomedical sciences. Results: To overcome this problem, we present a new DMMM called ROBUST (robust disease module mining via enumeration of diverse prize-collecting Steiner trees). In a large-scale empirical evaluation, we show that ROBUST outperforms competing methods in terms of robustness, scalability and, in most settings, functional relevance of the produced modules, measured via KEGG (Kyoto Encyclopedia of Genes and Genomes) gene set enrichment scores and overlap with DisGeNET disease genes.

OriginalspracheEnglisch
Seiten (von - bis)1600-1606
Seitenumfang7
FachzeitschriftBioinformatics
Jahrgang38
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - 15 März 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Robust disease module mining via enumeration of diverse prize-collecting Steiner trees“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren