Robust deadbeat control for synchronous machines rejecting noise and uncertainties by predictive filtering

Jean François Stumper, Sascha Kuehl, Ralph Kennel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

A predictive current control scheme for permanent-magnet synchronous motors (PMSMs) with deadbeat performance is presented. Major problems of such control schemes are the delay of the discrete control system, machine parameter uncertainties and measurement noise. With conventional methods, the delay can be easily compensated, but the effects of uncertainties can only be handled when they are comparably slow. This paper presents a new filtering method that attenuates the negative effects of parameter uncertainties in fast transients. The predictive controller inputs are actual measurements averaged with previous current predictions. As a result, the stability range is extended, and the oscillations caused by parameter uncertainties are damped. Noise sensitivity is also reduced. The system response is not slowed down. The results are confirmed analytically and experimentally.

OriginalspracheEnglisch
Titel8th International Conference on Power Electronics - ECCE Asia
Untertitel"Green World with Power Electronics", ICPE 2011-ECCE Asia
Seiten1378-1385
Seitenumfang8
DOIs
PublikationsstatusVeröffentlicht - 2011
Veranstaltung8th International Conference on Power Electronics - ECCE Asia: "Green World with Power Electronics", ICPE 2011-ECCE Asia - Jeju, Südkorea
Dauer: 30 Mai 20113 Juni 2011

Publikationsreihe

Name8th International Conference on Power Electronics - ECCE Asia: "Green World with Power Electronics", ICPE 2011-ECCE Asia

Konferenz

Konferenz8th International Conference on Power Electronics - ECCE Asia: "Green World with Power Electronics", ICPE 2011-ECCE Asia
Land/GebietSüdkorea
OrtJeju
Zeitraum30/05/113/06/11

Fingerprint

Untersuchen Sie die Forschungsthemen von „Robust deadbeat control for synchronous machines rejecting noise and uncertainties by predictive filtering“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren