Robust comparison of simultaneous EEG recordings using Kalman filters and Gaussian mixture models

Niels von Stein, Jonas Schulte-Coerne, Stephan M. Jonas, Ekaterina Kutafina

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

In this manuscript we propose a novel method to compare simultaneously recorded electroencephalography (EEG) signals from different devices. Although standard methods like correlation and spectral analysis give quantitative answers to this question, these methods often penalize certain artifacts such as eye blinking too strongly. In our analysis we instead utilize an unsupervised labeling technique to evaluate the matching of two signals by comparing their label sequences. The proposed method was successfully tested on artificial data, where it showed a reduced deviation from the ground truth compared to the correlation coefficient. Furthermore, the method was applied on a real use-case to assess the quality of a low-cost EEG device compared to a clinical one. Here it showed more consistent results than the correlation coefficient, while it also did not rely on outlier removal prior to the analysis. However, the proposed method still suffers from accidental matches of labels, so that unrelated data sets may be assigned an unexpectedly high matching score. This paper suggests extensions to the proposed method, which could improve this issue.

OriginalspracheEnglisch
TiteldHealth 2019 - From eHealth to dHealth - Proceedings of the 13th Health Informatics Meets Digital Health Conference
Redakteure/-innenDieter Hayn, Alphons Eggerth, Gunter Schreier
Herausgeber (Verlag)IOS Press
Seiten113-120
Seitenumfang8
ISBN (elektronisch)9781614999706
DOIs
PublikationsstatusVeröffentlicht - 2019
Veranstaltung13th Health Informatics Meets Digital Health Conference: From eHealth to dHealth, dHealth 2019 - Vienna, Österreich
Dauer: 28 Mai 201929 Mai 2019

Publikationsreihe

NameStudies in Health Technology and Informatics
Band260
ISSN (Print)0926-9630
ISSN (elektronisch)1879-8365

Konferenz

Konferenz13th Health Informatics Meets Digital Health Conference: From eHealth to dHealth, dHealth 2019
Land/GebietÖsterreich
OrtVienna
Zeitraum28/05/1929/05/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Robust comparison of simultaneous EEG recordings using Kalman filters and Gaussian mixture models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren