Robust Cochlear Modiolar Axis Detection in CT

Wilhelm Wimmer, Clair Vandersteen, Nicolas Guevara, Marco Caversaccio, Hervé Delingette

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

13 Zitate (Scopus)

Abstract

The cochlea, the auditory part of the inner ear, is a spiral-shaped organ with large morphological variability. An individualized assessment of its shape is essential for clinical applications related to tonotopy and cochlear implantation. To unambiguously reference morphological parameters, reliable recognition of the cochlear modiolar axis in computed tomography (CT) images is required. The conventional method introduces measurement uncertainties, as it is based on manually selected and difficult to identify landmarks. Herein, we present an algorithm for robust modiolar axis detection in clinical CT images. We define the modiolar axis as the rotation component of the kinematic spiral motion inherent in the cochlear shape. For surface fitting, we use a compact shape representation in a 7-dimensional kinematic parameter space based on extended Plücker coordinates. It is the first time such a kinematic representation is used for shape analysis in medical images. Robust surface fitting is achieved with an adapted approximate maximum likelihood method assuming a Student-t distribution, enabling axis detection even in partially available surface data. We verify the algorithm performance on a synthetic data set with cochlear surface subsets. In addition, we perform an experimental study with four experts in 23 human cochlea CT data sets to compare the automated detection with the manually found axes. Axes found from co-registered high resolution CT scans are used for reference. Our experiments show that the algorithm reduces the alignment error providing more reliable modiolar axis detection for clinical and research applications.

OriginalspracheEnglisch
TitelMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
Redakteure/-innenDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten3-10
Seitenumfang8
ISBN (Print)9783030322533
DOIs
PublikationsstatusVeröffentlicht - 2019
Extern publiziertJa
Veranstaltung22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Dauer: 13 Okt. 201917 Okt. 2019

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band11768 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Land/GebietChina
OrtShenzhen
Zeitraum13/10/1917/10/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Robust Cochlear Modiolar Axis Detection in CT“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren