Robust autoassociative memory with coupled networks of Kuramoto-type oscillators

Daniel Heger, Katharina Krischer

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

9 Zitate (Scopus)

Abstract

Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.

OriginalspracheEnglisch
Aufsatznummer022309
FachzeitschriftPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Jahrgang94
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 18 Aug. 2016

Fingerprint

Untersuchen Sie die Forschungsthemen von „Robust autoassociative memory with coupled networks of Kuramoto-type oscillators“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren