Robust 3D scan point classification using associative Markov networks

Rudolph Triebel, Kristian Kersting, Wolfram Burgard

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

80 Zitate (Scopus)

Abstract

In this paper we present an efficient technique to learn Associative Markov Networks (AMNs) for the segmentation of 3D scan data. Our technique is an extension of the work recently presented by Anguelov et al. [1], in which AMNs are applied and the learning is done using max-margin optimization. In this paper we show that by adaptively reducing the training data, the training process can be performed much more efficiently while still achieving good classification results. The reduction is obtained by utilizing kd-trees and pruning them appropriately. Our algorithm does not require any additional parameters and yields an abstraction of the training data. In experiments with real data collected from a mobile outdoor robot we demonstrate that our approach yields accurate segmentations.

OriginalspracheEnglisch
TitelProceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006
Seiten2603-2608
Seitenumfang6
DOIs
PublikationsstatusVeröffentlicht - 2006
Extern publiziertJa
Veranstaltung2006 IEEE International Conference on Robotics and Automation, ICRA 2006 - Orlando, FL, USA/Vereinigte Staaten
Dauer: 15 Mai 200619 Mai 2006

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
Band2006
ISSN (Print)1050-4729

Konferenz

Konferenz2006 IEEE International Conference on Robotics and Automation, ICRA 2006
Land/GebietUSA/Vereinigte Staaten
OrtOrlando, FL
Zeitraum15/05/0619/05/06

Fingerprint

Untersuchen Sie die Forschungsthemen von „Robust 3D scan point classification using associative Markov networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren