Rethinking Logging, Checkpoints, and Recovery for High-Performance Storage Engines

Michael Haubenschild, Caetano Sauer, Thomas Neumann, Viktor Leis

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

29 Zitate (Scopus)

Abstract

For decades, ARIES has been the standard for logging and recovery in database systems. ARIES offers important features like support for arbitrary workloads, fuzzy checkpoints, and transparent index recovery. Nevertheless, many modern in-memory database systems use more lightweight approaches that have less overhead and better multi-core scalability but only work well for the in-memory setting. Recently, a new class of high-performance storage engines has emerged, which exploit fast SSDs to achieve performance close to pure in-memory systems but also allow out-of-memory workloads. For these systems, ARIES is too slow whereas in-memory logging proposals are not applicable. In this work, we propose a new logging and recovery design that supports incremental and fuzzy checkpointing, index recovery, out-of-memory workloads, and low-latency transaction commits. Our continuous checkpointing algorithm guarantees bounded recovery time. Using per-thread logging with minimal synchronization, our implementation achieves near-linear scalability on multi-core CPUs. We implemented and evaluated these techniques in our LeanStore storage engine. For working sets that fit in main memory, we achieve performance close to that of an in-memory approach, even with logging, checkpointing, and dirty page writing enabled. For the out-of-memory scenario, we outperform a state-of-the-art ARIES implementation by a factor of two.

OriginalspracheEnglisch
TitelSIGMOD 2020 - Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data
Herausgeber (Verlag)Association for Computing Machinery
Seiten877-892
Seitenumfang16
ISBN (elektronisch)9781450367356
DOIs
PublikationsstatusVeröffentlicht - 14 Juni 2020
Veranstaltung2020 ACM SIGMOD International Conference on Management of Data, SIGMOD 2020 - Portland, USA/Vereinigte Staaten
Dauer: 14 Juni 202019 Juni 2020

Publikationsreihe

NameProceedings of the ACM SIGMOD International Conference on Management of Data
ISSN (Print)0730-8078

Konferenz

Konferenz2020 ACM SIGMOD International Conference on Management of Data, SIGMOD 2020
Land/GebietUSA/Vereinigte Staaten
OrtPortland
Zeitraum14/06/2019/06/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Rethinking Logging, Checkpoints, and Recovery for High-Performance Storage Engines“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren