TY - JOUR
T1 - Residual Stresses in Ribbed Reinforcing Bars
AU - Robl, Tobias
AU - Hegele, Patrick
AU - Krempaszky, Christian
AU - Werner, Ewald
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2024/1
Y1 - 2024/1
N2 - Ribbed reinforcing bars (rebars) are used for the reinforcement of concrete structures. In service, they are often subjected to cyclic loading. In general, the fatigue performance of rebars may be influenced by residual stresses originating from the manufacturing process. Knowledge about residual stresses in rebars and their origin, however, is sparse. So far, residual stress measurements are limited to individual stress components, viz., to the non-ribbed part of the rebar surface. At critical points of the rebar surface, where most of the fatigue cracks originate, i.e., the foot radius regions of transverse ribs, the residual stress state has not yet been investigated experimentally. To extend the knowledge about residual stresses in rebars within the scope of this work, residual stress measurements were carried out on a rebar specimen with a diameter of 28 mm made out of the rebar steel grade B500B. In addition, numerical simulations of the TempCoreTM process were carried out. The results of the experimental investigations show tensile residual stresses in the core and the transition zone of the examined rebar specimen. Low compressive residual stresses are measured at the non-ribbed part of the rebar surface, while high compressive residual stresses are present at the tip of the transverse ribs. The results of the numerical investigations are in reasonable accordance with the experimental results. Furthermore, the numerical results indicate moderate tensile stresses occurring on the rebar surface in the rib foot radius regions of the transverse ribs. High stress gradients directly beneath the rebar surface, which are reported in the literature and which are most likely related to a thin decarburized surface layer, could be reproduced qualitatively with the numerical model developed.
AB - Ribbed reinforcing bars (rebars) are used for the reinforcement of concrete structures. In service, they are often subjected to cyclic loading. In general, the fatigue performance of rebars may be influenced by residual stresses originating from the manufacturing process. Knowledge about residual stresses in rebars and their origin, however, is sparse. So far, residual stress measurements are limited to individual stress components, viz., to the non-ribbed part of the rebar surface. At critical points of the rebar surface, where most of the fatigue cracks originate, i.e., the foot radius regions of transverse ribs, the residual stress state has not yet been investigated experimentally. To extend the knowledge about residual stresses in rebars within the scope of this work, residual stress measurements were carried out on a rebar specimen with a diameter of 28 mm made out of the rebar steel grade B500B. In addition, numerical simulations of the TempCoreTM process were carried out. The results of the experimental investigations show tensile residual stresses in the core and the transition zone of the examined rebar specimen. Low compressive residual stresses are measured at the non-ribbed part of the rebar surface, while high compressive residual stresses are present at the tip of the transverse ribs. The results of the numerical investigations are in reasonable accordance with the experimental results. Furthermore, the numerical results indicate moderate tensile stresses occurring on the rebar surface in the rib foot radius regions of the transverse ribs. High stress gradients directly beneath the rebar surface, which are reported in the literature and which are most likely related to a thin decarburized surface layer, could be reproduced qualitatively with the numerical model developed.
KW - constitutive modeling
KW - manufacturing process
KW - reinforcing steel
KW - residual stresses
KW - stress concentration
UR - http://www.scopus.com/inward/record.url?scp=85181926442&partnerID=8YFLogxK
U2 - 10.3390/ma17010026
DO - 10.3390/ma17010026
M3 - Article
AN - SCOPUS:85181926442
SN - 1996-1944
VL - 17
JO - Materials
JF - Materials
IS - 1
M1 - 26
ER -