Reproducible evaluation of neural network based channel estimators and predictors using a generic dataset

Nurettin Turan, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

A low-complexity neural network-based approach for channel estimation was proposed recently, where assumptions on the channel model were incorporated into the design procedure of the estimator. Instead of using data from a measurement campaign as done in previous work, we evaluate the performance of the convolutional neural network (CNN)-based channel estimator by using a reproducible mmWave environment of the DeepMIMO dataset. We further propose a neural network-based predictor which is derived by starting from the linear minimum mean squared error (LMMSE) predictor. We start by deriving a weighted sum of LMMSE predictors which is motivated by the structure of the optimal minimum mean squared error (MMSE) predictor. This predictor provides an initialization (weight matrices, biases and activation function) to a feed-forward neural network-based predictor. With a properly learned neural network, we show that it is possible to easily outperform the LMMSE predictor based on the Jakes assumption of the underlying Doppler spectrum in a reproducible indoor scenario of the DeepMIMO dataset.

OriginalspracheEnglisch
TitelWSA 2020 - 24th International ITG Workshop on Smart Antennas
Herausgeber (Verlag)VDE VERLAG GMBH
ISBN (elektronisch)9783800752003
PublikationsstatusVeröffentlicht - 2020
Veranstaltung24th International ITG Workshop on Smart Antennas, WSA 2020 - Hamburg, Deutschland
Dauer: 18 Feb. 202020 Feb. 2020

Publikationsreihe

NameWSA 2020 - 24th International ITG Workshop on Smart Antennas

Konferenz

Konferenz24th International ITG Workshop on Smart Antennas, WSA 2020
Land/GebietDeutschland
OrtHamburg
Zeitraum18/02/2020/02/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Reproducible evaluation of neural network based channel estimators and predictors using a generic dataset“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren