Renal cancer cell classification using generative embeddings and information theoretic kernels

Manuele Bicego, Aydin Ulaş, Peter Schüffler, Umberto Castellani, Vittorio Murino, André Martins, Pedro Aguiar, Mario Figueiredo

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

In this paper, we propose a hybrid generative/discriminative classification scheme and apply it to the detection of renal cell carcinoma (RCC) on tissue microarray (TMA) images. In particular we use probabilistic latent semantic analysis (pLSA) as a generative model to perform generative embedding onto the free energy score space (FESS). Subsequently, we use information theoretic kernels on these embeddings to build a kernel based classifier on the FESS. We compare our results with support vector machines based on standard linear kernels and RBF kernels; and with the nearest neighbor (NN) classifier based on the Mahalanobis distance using a diagonal covariance matrix. We conclude that the proposed hybrid approach achieves higher accuracy, revealing itself as a promising approach for this class of problems.

OriginalspracheEnglisch
TitelPattern Recognition in Bioinformatics - 6th IAPR International Conference, PRIB 2011, Proceedings
Seiten75-86
Seitenumfang12
DOIs
PublikationsstatusVeröffentlicht - 2011
Extern publiziertJa
Veranstaltung6th IAPR International Conference on Pattern Recognition in Bioinformatics, PRIB 2011 - Delft, Niederlande
Dauer: 2 Nov. 20114 Nov. 2011

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band7036 LNBI
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz6th IAPR International Conference on Pattern Recognition in Bioinformatics, PRIB 2011
Land/GebietNiederlande
OrtDelft
Zeitraum2/11/114/11/11

Fingerprint

Untersuchen Sie die Forschungsthemen von „Renal cancer cell classification using generative embeddings and information theoretic kernels“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren