Reliable Trajectory Prediction and Uncertainty Quantification with Conditioned Diffusion Models

Marion Neumeier, Sebastian Dorn, Michael Botsch, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

This work introduces the conditioned Vehicle Motion Diffusion (cVMD) model, a novel network architecture for highway trajectory prediction using diffusion models. The proposed model ensures the drivability of the predicted trajectory by integrating non-holonomic motion constraints and physical constraints into the generative prediction module. Central to the architecture of cVMD is its capacity to perform uncertainty quantification, a feature that is crucial in safety-critical applications. By integrating the quantified uncertainty into the prediction process, the cVMD's trajectory prediction performance is improved considerably. The model's performance was evaluated using the publicly available highD dataset. Experiments show that the proposed architecture achieves competitive trajectory prediction accuracy compared to state-of-the-art models, while providing guaranteed drivable trajectories and uncertainty quantification.

OriginalspracheEnglisch
TitelProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
Herausgeber (Verlag)IEEE Computer Society
Seiten3461-3470
Seitenumfang10
ISBN (elektronisch)9798350365474
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 - Seattle, USA/Vereinigte Staaten
Dauer: 16 Juni 202422 Juni 2024

Publikationsreihe

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (Print)2160-7508
ISSN (elektronisch)2160-7516

Konferenz

Konferenz2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
Land/GebietUSA/Vereinigte Staaten
OrtSeattle
Zeitraum16/06/2422/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Reliable Trajectory Prediction and Uncertainty Quantification with Conditioned Diffusion Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren