Reliability of power output, maximal rate of capillary blood lactate accumulation, and phosphagen contribution time following 15-s sprint cycling in amateur cyclists

Benedikt Meixner, Valentin Nusser, Karsten Koehler, Mattice Sablain, Jan Boone, Billy Sperlich

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

1 Zitat (Scopus)

Abstract

Based on Mader's mathematical model, the rate of capillary blood lactate concentration (νLamax) following intense exercise is thought to reflect the maximal glycolytic rate. We aimed to investigate the reliability of important variables of Mader's model (i.e. power output, lactate accumulation, predominant phosphagen contribution time frames (tPCr)) and resulting νLamax values derived during and after a 15-s cycling sprint. Fifty cyclists performed a 15-s all-out sprint test on a Cyclus2 ergometer three times. The first sprint test was considered a familiarization trial. Capillary blood was sampled before and every minute (for 8 min) after the sprint to determine νLamax. Test–retest analysis between T2 and T3 revealed excellent reliability for power output (Pmean and Ppeak; ICC = 0.99, 0.99), ∆La and νLamax with tPCr of 3.5 s (ICC = 0.91, 0.91). νLamax calculated with tPCr = tPpeak (ICC = 0.87) and tPCr = tPpeak–3.5% (ICC = 0.79) revealed good reliability. tPpeak and tPpeak–3.5% revealed only poor and moderate reliability (ICC = 0.41, 0.52). Power output and ∆La are reliable parameters in the context of this test. Depending on tPCr, reliability of νLamax varies considerably with tPCr of 3.5 s showing excellent reliability. We recommend standardization of this type of testing especially tPCr.

OriginalspracheEnglisch
Aufsatznummere16086
FachzeitschriftPhysiological Reports
Jahrgang12
Ausgabenummer10
DOIs
PublikationsstatusVeröffentlicht - Mai 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Reliability of power output, maximal rate of capillary blood lactate accumulation, and phosphagen contribution time following 15-s sprint cycling in amateur cyclists“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren