Reinforcement Learning with Ensemble Model Predictive Safety Certification

Sven Gronauer, Tom Haider, Felippe Schmoeller da Roza, Klaus Diepold

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

Abstract

Reinforcement learning algorithms need exploration to learn. However, unsupervised exploration prevents the deployment of such algorithms on safety-critical tasks and limits real-world deployment. In this paper, we propose a new algorithm called Ensemble Model Predictive Safety Certification that combines model-based deep reinforcement learning with tube-based model predictive control to correct the actions taken by a learning agent, keeping safety constraint violations at a minimum through planning. Our approach aims to reduce the amount of prior knowledge about the actual system by requiring only offline data generated by a safe controller. Our results show that we can achieve significantly fewer constraint violations than comparable reinforcement learning methods.

OriginalspracheEnglisch
Seiten (von - bis)724-732
Seitenumfang9
FachzeitschriftProceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
Jahrgang2024-May
PublikationsstatusVeröffentlicht - 2024
Veranstaltung23rd International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2024 - Auckland, Neuseeland
Dauer: 6 Mai 202410 Mai 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Reinforcement Learning with Ensemble Model Predictive Safety Certification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren