Regularization Strength Impact on Neural Network Ensembles

Cedrique Rovile Njieutcheu Tassi, Anko Börner, Rudolph Triebel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

In the last decade, several approaches have been proposed for regularizing deeper and wider neural networks (NNs), which is of importance in areas like image classification. It is now common practice to incorporate several regularization approaches in the training procedure of NNs. However, the impact of regularization strength on the properties of an ensemble of NNs remains unclear. For this reason, the study empirically compared the impact of NNs built based on two different regularization strengths (weak regularization (WR) and strong regularization (SR)) on the properties of an ensemble, such as the magnitude of logits, classification accuracy, calibration error, and ability to separate true predictions (TPs) and false predictions (FPs). The comparison was based on results from different experiments conducted on three different models, datasets, and architectures. Experimental results show that the increase in regularization strength 1) reduces the magnitude of logits; 2) can increase or decrease the classification accuracy depending on the dataset and/or architecture; 3) increases the calibration error; and 4) can improve or harm the separability between TPs and FPs depending on the dataset, architecture, model type and/or FP type.

OriginalspracheEnglisch
TitelACAI 2022 - Conference Proceedings
Untertitel2022 5th International Conference on Algorithms, Computing and Artificial Intelligence
Herausgeber (Verlag)Association for Computing Machinery
ISBN (elektronisch)9781450398343
DOIs
PublikationsstatusVeröffentlicht - 23 Dez. 2022
Extern publiziertJa
Veranstaltung5th International Conference on Algorithms, Computing and Artificial Intelligence, ACAI 2022 - Sanya, China
Dauer: 23 Dez. 202225 Dez. 2022

Publikationsreihe

NameACM International Conference Proceeding Series

Konferenz

Konferenz5th International Conference on Algorithms, Computing and Artificial Intelligence, ACAI 2022
Land/GebietChina
OrtSanya
Zeitraum23/12/2225/12/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Regularization Strength Impact on Neural Network Ensembles“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren