Refined performance guarantees for Sparse Power Factorization

Jakob Alexander Geppert, Felix Krahmer, Dominik Stöger

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

In many applications, one is faced with an inverse problem, where the known signal depends in a bilinear way on two unknown input vectors. Often at least one of the input vectors is assumed to be sparse, i.e., to have only few non-zero entries. Sparse Power Factorization (SPF), proposed by Lee, Wu, and Bresler, aims to tackle this problem. They have established recovery guarantees for a somewhat restrictive class of signals under the assumption that the measurements are random. We generalize these recovery guarantees to a significantly enlarged and more realistic signal class at the expense of a moderately increased number of measurements.

OriginalspracheEnglisch
Titel2017 12th International Conference on Sampling Theory and Applications, SampTA 2017
Redakteure/-innenGholamreza Anbarjafari, Andi Kivinukk, Gert Tamberg
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten509-513
Seitenumfang5
ISBN (elektronisch)9781538615652
DOIs
PublikationsstatusVeröffentlicht - 1 Sept. 2017
Veranstaltung12th International Conference on Sampling Theory and Applications, SampTA 2017 - Tallinn, Estland
Dauer: 3 Juli 20177 Juli 2017

Publikationsreihe

Name2017 12th International Conference on Sampling Theory and Applications, SampTA 2017

Konferenz

Konferenz12th International Conference on Sampling Theory and Applications, SampTA 2017
Land/GebietEstland
OrtTallinn
Zeitraum3/07/177/07/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Refined performance guarantees for Sparse Power Factorization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren