TY - JOUR
T1 - Reductive Outer-Sphere Single Electron Transfer Is an Exception Rather than the Rule in Natural and Engineered Chlorinated Ethene Dehalogenation
AU - Heckel, Benjamin
AU - Cretnik, Stefan
AU - Kliegman, Sarah
AU - Shouakar-Stash, Orfan
AU - McNeill, Kristopher
AU - Elsner, Martin
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/9/5
Y1 - 2017/9/5
N2 - Chlorinated ethenes (CEs) such as perchloroethylene, trichloroethylene and dichloroethylene are notorious groundwater contaminants. Although reductive dehalogenation is key to their environmental and engineered degradation, underlying reaction mechanisms remain elusive. Outer-sphere reductive single electron transfer (OS-SET) has been proposed for such different processes as Vitamin B12-dependent biodegradation and zerovalent metal-mediated dehalogenation. Compound-specific isotope effect (13C/12C, 37Cl/35Cl) analysis offers a new opportunity to test these hypotheses. Defined OS-SET model reactants (CO2 radical anions, S2--doped graphene oxide in water) caused strong carbon (εC = -7.9‰ to -11.9‰), but negligible chlorine isotope effects (εCl = -0.12‰ to 0.04‰) in CEs. Greater chlorine isotope effects were observed in CHCl3 (εC = -7.7‰, εCl = -2.6‰), and in CEs when the exergonicity of C-Cl bond cleavage was reduced in an organic solvent (reaction with arene radical anions in glyme). Together, this points to dissociative OS-SET (SET to a σ∗ orbital concerted with C-Cl breakage) in alkanes compared to stepwise OS-SET (SET to a π∗ orbital followed by C-Cl cleavage) in ethenes. The nonexistent chlorine isotope effects of chlorinated ethenes in all aqueous OS-SET experiments contrast strongly with pronounced Cl isotope fractionation in all natural and engineered reductive dehalogenations reported to date suggesting that OS-SET is an exception rather than the rule in environmental transformations of chlorinated ethenes.
AB - Chlorinated ethenes (CEs) such as perchloroethylene, trichloroethylene and dichloroethylene are notorious groundwater contaminants. Although reductive dehalogenation is key to their environmental and engineered degradation, underlying reaction mechanisms remain elusive. Outer-sphere reductive single electron transfer (OS-SET) has been proposed for such different processes as Vitamin B12-dependent biodegradation and zerovalent metal-mediated dehalogenation. Compound-specific isotope effect (13C/12C, 37Cl/35Cl) analysis offers a new opportunity to test these hypotheses. Defined OS-SET model reactants (CO2 radical anions, S2--doped graphene oxide in water) caused strong carbon (εC = -7.9‰ to -11.9‰), but negligible chlorine isotope effects (εCl = -0.12‰ to 0.04‰) in CEs. Greater chlorine isotope effects were observed in CHCl3 (εC = -7.7‰, εCl = -2.6‰), and in CEs when the exergonicity of C-Cl bond cleavage was reduced in an organic solvent (reaction with arene radical anions in glyme). Together, this points to dissociative OS-SET (SET to a σ∗ orbital concerted with C-Cl breakage) in alkanes compared to stepwise OS-SET (SET to a π∗ orbital followed by C-Cl cleavage) in ethenes. The nonexistent chlorine isotope effects of chlorinated ethenes in all aqueous OS-SET experiments contrast strongly with pronounced Cl isotope fractionation in all natural and engineered reductive dehalogenations reported to date suggesting that OS-SET is an exception rather than the rule in environmental transformations of chlorinated ethenes.
UR - http://www.scopus.com/inward/record.url?scp=85028953919&partnerID=8YFLogxK
U2 - 10.1021/acs.est.7b01447
DO - 10.1021/acs.est.7b01447
M3 - Article
C2 - 28727446
AN - SCOPUS:85028953919
SN - 0013-936X
VL - 51
SP - 9663
EP - 9673
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 17
ER -