Recursive SQL for Data Mining

Maximilian Emanuel Schüle, Alfons Kemper, Thomas Neumann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

To implement algorithms within database systems beyond the design of SQL as a data query language, library functions or external tools were used that require the extraction of data first. To eliminate the need of data extraction out of database systems, we argue that SQL-92 plus recursive tables is capable of expressing user-defined algorithms. To underline this claim, we transform selected algorithms out of graph mining, clustering and association rule analysis into recursive common table expressions (CTEs). We compare their performance to the one of user-defined functions and external tools. Our evaluation shows a competitive performance when using recursive CTEs to library functions either when using a disk-based database systems or a modern in-memory engine.

OriginalspracheEnglisch
TitelScientific and Statistical Database Management - 34th International Conference, SSDBM 2022 - Proceedings
Redakteure/-innenElaheh Pourabbas, Yongluan Zhou, Yuchen Li, Bin Yang
Herausgeber (Verlag)Association for Computing Machinery
ISBN (elektronisch)9781450396677
DOIs
PublikationsstatusVeröffentlicht - 6 Juli 2022
Veranstaltung34th International Conference on Scientific and Statistical Database Management, SSDBM 2022 - Copenhagen, Dänemark
Dauer: 6 Juli 20228 Juli 2022

Publikationsreihe

NameACM International Conference Proceeding Series

Konferenz

Konferenz34th International Conference on Scientific and Statistical Database Management, SSDBM 2022
Land/GebietDänemark
OrtCopenhagen
Zeitraum6/07/228/07/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Recursive SQL for Data Mining“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren