Reconstruction-error-based learning for continuous emotion recognition in speech

Jing Han, Zixing Zhang, Fabien Ringeval, Bjorn Schuller

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

31 Zitate (Scopus)

Abstract

To advance the performance of continuous emotion recognition from speech, we introduce a reconstruction-error-based (RE-based) learning framework with memory-enhanced Recurrent Neural Networks (RNN). In the framework, two successive RNN models are adopted, where the first model is used as an autoencoder for reconstructing the original features, and the second is employed to perform emotion prediction. The RE of the original features is used as a complementary descriptor, which is merged with the original features and fed to the second model. The assumption of this framework is that the system has the ability to learn its 'drawback' which is expressed by the RE. Experimental results on the RECOLA database show that the proposed framework significantly outperforms the baseline systems without any RE information in terms of Concordance Correlation Coefficient (.729 vs.710 for arousal,.360 vs.237 for valence), and also significantly overcomes other state-of-the-art methods.

OriginalspracheEnglisch
Titel2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2367-2371
Seitenumfang5
ISBN (elektronisch)9781509041176
DOIs
PublikationsstatusVeröffentlicht - 16 Juni 2017
Extern publiziertJa
Veranstaltung2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, USA/Vereinigte Staaten
Dauer: 5 März 20179 März 2017

Publikationsreihe

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Konferenz

Konferenz2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
Land/GebietUSA/Vereinigte Staaten
OrtNew Orleans
Zeitraum5/03/179/03/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Reconstruction-error-based learning for continuous emotion recognition in speech“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren