Reconstruction-based Out-of-Distribution Detection for Short-Range FMCW Radar

Sabri Mustafa Kahya, Muhammet Sami Yavuz, Eckehard Steinbach

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Out-of-distribution (OOD) detection recently has drawn attention due to its critical role in the safe deployment of modern neural network architectures in real-world applications. The OOD detectors aim to distinguish samples that lie outside the training distribution in order to avoid the overconfident predictions of machine learning models on OOD data. Existing detectors, which mainly rely on the logit, intermediate feature space, softmax score, or reconstruction loss, manage to produce promising results. However, most of these methods are developed for the image domain. In this study, we propose a novel reconstruction-based OOD detector to operate on the radar domain. Our method exploits an autoencoder (AE) and its latent representation to detect the OOD samples. We propose two scores incorporating the patch-based reconstruction loss and the energy value calculated from the latent representations of each patch. We achieve an AUROC of 90.72% on our dataset collected by using 60 GHz short-range FMCW Radar. The experiments demonstrate that, in terms of AUROC and AUPR, our method outperforms the baseline (AE) and the other state-of-the-art methods. Also, thanks to its model size of 641 kB, our detector is suitable for embedded usage.

OriginalspracheEnglisch
Titel31st European Signal Processing Conference, EUSIPCO 2023 - Proceedings
Herausgeber (Verlag)European Signal Processing Conference, EUSIPCO
Seiten1350-1354
Seitenumfang5
ISBN (elektronisch)9789464593600
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung31st European Signal Processing Conference, EUSIPCO 2023 - Helsinki, Finnland
Dauer: 4 Sept. 20238 Sept. 2023

Publikationsreihe

NameEuropean Signal Processing Conference
ISSN (Print)2219-5491

Konferenz

Konferenz31st European Signal Processing Conference, EUSIPCO 2023
Land/GebietFinnland
OrtHelsinki
Zeitraum4/09/238/09/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Reconstruction-based Out-of-Distribution Detection for Short-Range FMCW Radar“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren