Rebalancing Autonomous Electric Vehicles for Mobility-on-Demand by Data-Driven Model Predictive Control

Muhammad Sajid Ali, Nagacharan Teja Tangirala, Alois Knoll, David Eckhoff

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

The main goal of this paper is to present an end-to-end, data-driven framework for the control of Autonomous Electric Vehicles (AEV) for Mobility-on-Demand (MoD). We present a data-driven Model Predictive Control (MPC) algorithm that rebalances (i.e. preemptively repositions) the AEV fleet in order to meet the mobility demand in the near future. The algorithm consists of Mixed Integer Linear Programming (MILP) that leverages the short-term forecast of the mobility demand as well as the charging station availability in order to optimally rebalance the AEV fleet. The proposed algorithm is evaluated by means of simulations with the New York City (NYC) taxi data. The proposed algorithm outperforms other state-of-the-art rebalancing strategies by reducing the mean customer wait time by 82.3% and the number of rejected requests by 94.6% for a given fleet size and a number of charging stations.

OriginalspracheEnglisch
Titel2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten215-221
Seitenumfang7
ISBN (elektronisch)9798350399462
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023 - Bilbao, Spanien
Dauer: 24 Sept. 202328 Sept. 2023

Publikationsreihe

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
ISSN (Print)2153-0009
ISSN (elektronisch)2153-0017

Konferenz

Konferenz26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023
Land/GebietSpanien
OrtBilbao
Zeitraum24/09/2328/09/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Rebalancing Autonomous Electric Vehicles for Mobility-on-Demand by Data-Driven Model Predictive Control“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren