Real-Time Instance Segmentation of Pedestrians using Transfer Learning

Bare Luka Zagar, Tobias Preintner, Alois C. Knoll, Ekim Yurtsever

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

Real-time instance segmentation of pedestrians presents a critical core task within an automated driving pipeline. Recent research focuses on existing real-world datasets to train their instance segmentation networks. However, due to the limited size of real-world datasets, they tend to either overfit or lack accuracy. Therefore, these networks remain useless for real-world applications. Hence, we introduce a transfer learning strategy by combining a large-scale synthetic dataset and a real-world dataset for instance segmentation of pedestrians. We showcase our approach on three state-of-the-art real-time instance segmentation methods: (1) YOLACT++, (2) SipMask, and (3) BlendMask. Finally, we provide a quantitative and qualitative evaluation of our introduced approach on two publicly available urban street scenes datasets, i.e. the real-world Cityscapes dataset and the synthetic Synscapes dataset.

OriginalspracheEnglisch
Titel2022 27th International Conference on Automation and Computing
UntertitelSmart Systems and Manufacturing, ICAC 2022
Redakteure/-innenChenguang Yang, Yuchun Xu
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781665498074
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung27th International Conference on Automation and Computing, ICAC 2022 - Bristol, Großbritannien/Vereinigtes Königreich
Dauer: 1 Sept. 20223 Sept. 2022

Publikationsreihe

Name2022 27th International Conference on Automation and Computing: Smart Systems and Manufacturing, ICAC 2022

Konferenz

Konferenz27th International Conference on Automation and Computing, ICAC 2022
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtBristol
Zeitraum1/09/223/09/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Real-Time Instance Segmentation of Pedestrians using Transfer Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren