Real-Time Gesture Recognition with Shallow Convolutional Neural Networks Employing an Ultra Low Cost Radar System

Matthias G. Ehrnsperger, Thomas Brenner, Uwe Siart, Thomas F. Eibert

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

Ultra-low-cost radar hardware (HW) in combination with low-cost processing units is investigated in order to create and evaluate a holistic ultra-low-cost gesture recognition system. We study the real-time performance of novel machine learning (nML) methods: Neural networks (NNs), in particular shallow architectures of convolutional neural networks (CNNs). The real-time performance of each approach is judged by computational complexity, prediction time, accuracy, and false-positive rate (FPR). As HW, a two-channel radar system with continuous wave (CW) modulation at a carrier frequency of 10 GHz has been employed throughout the investigations. The algorithms are designed, trained, evaluated, and juxtaposed. The results show that the classification process on low-cost HW is feasible and allows to achieve accuracies of 97.9% and FPRs of 1.72%, all of which with a response time of less than 180 ms.

OriginalspracheEnglisch
TitelGeMIC 2020 - Proceedings of the 2020 German Microwave Conference
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten88-91
Seitenumfang4
ISBN (elektronisch)9783982039718
PublikationsstatusVeröffentlicht - März 2020
Veranstaltung2020 German Microwave Conference, GeMIC 2020 - Cottbus, Deutschland
Dauer: 9 März 202011 März 2020

Publikationsreihe

NameGeMIC 2020 - Proceedings of the 2020 German Microwave Conference

Konferenz

Konferenz2020 German Microwave Conference, GeMIC 2020
Land/GebietDeutschland
OrtCottbus
Zeitraum9/03/2011/03/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Real-Time Gesture Recognition with Shallow Convolutional Neural Networks Employing an Ultra Low Cost Radar System“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren