Real-time dense geometry from a handheld camera

Jan Stühmer, Stefan Gumhold, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

156 Zitate (Scopus)

Abstract

We present a novel variational approach to estimate dense depth maps from multiple images in real-time. By using robust penalizers for both data term and regularizer, our method preserves discontinuities in the depth map. We demonstrate that the integration of multiple images substantially increases the robustness of estimated depth maps to noise in the input images. The integration of our method into recently published algorithms for camera tracking allows dense geometry reconstruction in real-time using a single handheld camera. We demonstrate the performance of our algorithm with real-world data.

OriginalspracheEnglisch
TitelPattern Recognition - 32nd DAGM Symposium, Proceedings
Seiten11-20
Seitenumfang10
DOIs
PublikationsstatusVeröffentlicht - 2010
Veranstaltung32nd Annual Symposium of the German Association for Pattern Recognition, DAGM 2010 - Darmstadt, Deutschland
Dauer: 22 Sept. 201024 Sept. 2010

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band6376 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz32nd Annual Symposium of the German Association for Pattern Recognition, DAGM 2010
Land/GebietDeutschland
OrtDarmstadt
Zeitraum22/09/1024/09/10

Fingerprint

Untersuchen Sie die Forschungsthemen von „Real-time dense geometry from a handheld camera“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren