Abstract
A rate-independent evolution problem is considered for which the stored energy density depends on the gradient of the displacement. The stored energy density does not have to be quasiconvex and is assumed to exhibit linear growth at infinity; no further assumptions are made on the behaviour at infinity. We analyse an evolutionary process with positively 1-homogeneous dissipation and time-dependent Dirichlet boundary conditions.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 591-604 |
Seitenumfang | 14 |
Fachzeitschrift | Discrete and Continuous Dynamical Systems - Series S |
Jahrgang | 5 |
Ausgabenummer | 3 |
DOIs | |
Publikationsstatus | Veröffentlicht - Juni 2012 |
Extern publiziert | Ja |