Rapid three-dimensional multiparametric MRI with quantitative transient-state imaging

Pedro A. Gómez, Matteo Cencini, Mohammad Golbabaee, Rolf F. Schulte, Carolin Pirkl, Izabela Horvath, Giada Fallo, Luca Peretti, Michela Tosetti, Bjoern H. Menze, Guido Buonincontri

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

36 Zitate (Scopus)

Abstract

Novel methods for quantitative, transient-state multiparametric imaging are increasingly being demonstrated for assessment of disease and treatment efficacy. Here, we build on these by assessing the most common Non-Cartesian readout trajectories (2D/3D radials and spirals), demonstrating efficient anti-aliasing with a k-space view-sharing technique, and proposing novel methods for parameter inference with neural networks that incorporate the estimation of proton density. Our results show good agreement with gold standard and phantom references for all readout trajectories at 1.5 T and 3 T. Parameters inferred with the neural network were within 6.58% difference from the parameters inferred with a high-resolution dictionary. Concordance correlation coefficients were above 0.92 and the normalized root mean squared error ranged between 4.2 and 12.7% with respect to gold-standard phantom references for T1 and T2. In vivo acquisitions demonstrate sub-millimetric isotropic resolution in under five minutes with reconstruction and inference times < 7 min. Our 3D quantitative transient-state imaging approach could enable high-resolution multiparametric tissue quantification within clinically acceptable acquisition and reconstruction times.

OriginalspracheEnglisch
Aufsatznummer13769
FachzeitschriftScientific Reports
Jahrgang10
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 1 Dez. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Rapid three-dimensional multiparametric MRI with quantitative transient-state imaging“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren