Range prediction for EVs via crowd-sourcing

Stefan Grubwinkler, Tobias Brunner, Markus Lienkamp

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

13 Zitate (Scopus)

Abstract

Drivers of electric vehicles (EVs) need an accurate energy prediction in order to prevent running out of battery. We introduce a cloud-based system using crowd-sourced speed profiles for the energy prediction, since they consider the individual driving behaviour and the prevailing traffic congestion. In this paper, we focus on the modular cloud-based energy prediction system which provides three prediction values with various degrees of accuracy and complexity for different user groups. We realise a prototypical driving range prediction before the start of a trip within an application for a mobile device.

OriginalspracheEnglisch
Titel2014 IEEE Vehicle Power and Propulsion Conference, VPPC 2014
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781479967834
DOIs
PublikationsstatusVeröffentlicht - 2014
Veranstaltung2014 IEEE Vehicle Power and Propulsion Conference, VPPC 2014 - Coimbra, Portugal
Dauer: 27 Okt. 201430 Okt. 2014

Publikationsreihe

Name2014 IEEE Vehicle Power and Propulsion Conference, VPPC 2014

Konferenz

Konferenz2014 IEEE Vehicle Power and Propulsion Conference, VPPC 2014
Land/GebietPortugal
OrtCoimbra
Zeitraum27/10/1430/10/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Range prediction for EVs via crowd-sourcing“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren