Random shuffling beats SGD after finite epochs

Jeff Hao Chen, Suvrit Sra

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

A long-standing problem in optimization is proving that RANDOMSHUFFLE, the without-replacement version of SGD, converges faster than (the usual) with-replacement SGD. Building upon (Giirbiizbalaban et al., 2015b), we present the first non-asymptotic results for this problem, proving that after a reasonable number of epochs RANDOMSHUFFLE converges faster than SGD. Specifically, we prove that for strongly convex, second-order smooth functions, the iterates of RANDOMSHUFFLE converge to the optimal solution as O(1/T2 + n3/r3), where n is the number of components in the objective, and T is number of iterations. This result implies that after O (√n) epochs, RANDOMSHUFFLE is strictly better than SGD (which converges as O(1/T)). The key step toward showing this better dependence on T is the introduction of n into the bound; and as our analysis shows, in general a dependence on n is unavoidable without further changes. To understand how RANDOMSHUFFLE works in practice, we further explore two valuable settings: data sparsity and over-parameterization. For sparse data, RANDOMSHUFFLE has the rate Ö (/r2), aea strictly better than SGD. Under a setting closely related to over-parameterization, RANDOMSHUFFLE is shown to converge faster than SGD after any arbitrary number of iterations. Finally, we extend the analysis of RANDOMSHUFFLE to smooth convex and some non-convex functions.

OriginalspracheEnglisch
Titel36th International Conference on Machine Learning, ICML 2019
Herausgeber (Verlag)International Machine Learning Society (IMLS)
Seiten4651-4683
Seitenumfang33
ISBN (elektronisch)9781510886988
PublikationsstatusVeröffentlicht - 2019
Extern publiziertJa
Veranstaltung36th International Conference on Machine Learning, ICML 2019 - Long Beach, USA/Vereinigte Staaten
Dauer: 9 Juni 201915 Juni 2019

Publikationsreihe

Name36th International Conference on Machine Learning, ICML 2019
Band2019-June

Konferenz

Konferenz36th International Conference on Machine Learning, ICML 2019
Land/GebietUSA/Vereinigte Staaten
OrtLong Beach
Zeitraum9/06/1915/06/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Random shuffling beats SGD after finite epochs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren