TY - JOUR
T1 - Radioactivity control strategy for the JUNO detector
AU - the JUNO Collaboration
AU - Abusleme, Angel
AU - Adam, Thomas
AU - Ahmad, Shakeel
AU - Ahmed, Rizwan
AU - Aiello, Sebastiano
AU - Akram, Muhammad
AU - An, Fengpeng
AU - An, Qi
AU - Andronico, Giuseppe
AU - Anfimov, Nikolay
AU - Antonelli, Vito
AU - Antoshkina, Tatiana
AU - Asavapibhop, Burin
AU - de André, João Pedro Athayde Marcondes
AU - Auguste, Didier
AU - Babic, Andrej
AU - Baldini, Wander
AU - Barresi, Andrea
AU - Basilico, Davide
AU - Baussan, Eric
AU - Bellato, Marco
AU - Bergnoli, Antonio
AU - Birkenfeld, Thilo
AU - Blin, Sylvie
AU - Blum, David
AU - Blyth, Simon
AU - Bolshakova, Anastasia
AU - Bongrand, Mathieu
AU - Bordereau, Clément
AU - Breton, Dominique
AU - Brigatti, Augusto
AU - Brugnera, Riccardo
AU - Bruno, Riccardo
AU - Budano, Antonio
AU - Buscemi, Mario
AU - Busto, Jose
AU - Butorov, Ilya
AU - Cabrera, Anatael
AU - Cai, Hao
AU - Cai, Xiao
AU - Cai, Yanke
AU - Cai, Zhiyan
AU - Cammi, Antonio
AU - Campeny, Agustin
AU - Cao, Chuanya
AU - Cao, Guofu
AU - Cao, Jun
AU - Caruso, Rossella
AU - Cerna, Cédric
AU - Oberauer, Lothar
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/11
Y1 - 2021/11
N2 - JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day (cpd), therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz (i.e. ∼1 cpd accidental background) in the default fiducial volume, above an energy threshold of 0.7 MeV. [Figure not available: see fulltext.]
AB - JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day (cpd), therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz (i.e. ∼1 cpd accidental background) in the default fiducial volume, above an energy threshold of 0.7 MeV. [Figure not available: see fulltext.]
KW - Neutrino Detectors and Telescopes (experiments)
UR - http://www.scopus.com/inward/record.url?scp=85119416871&partnerID=8YFLogxK
U2 - 10.1007/JHEP11(2021)102
DO - 10.1007/JHEP11(2021)102
M3 - Article
AN - SCOPUS:85119416871
SN - 1126-6708
VL - 2021
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 11
M1 - 102
ER -