Querying large knowledge graphs over triple pattern fragments: An empirical study

Lars Heling, Maribel Acosta, Maria Maleshkova, York Sure-Vetter

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)


Triple Pattern Fragments (TPFs) are a novel interface for accessing data in knowledge graphs on the web. So far, work on performance evaluation and optimization has focused mainly on SPARQL query execution over TPF servers. However, in order to devise querying techniques that efficiently access large knowledge graphs via TPFs, we need to identify and understand the variables that influence the performance of TPF servers on a fine-grained level. In this work, we assess the performance of TPFs by measuring the response time for different requests and analyze how the requests’ properties, as well as the TPF server configuration, may impact the performance. For this purpose, we developed the Triple Pattern Fragment Profiler to determine the performance of TPF server. The resource is openly available at https://doi.org/10.5281/zenodo.1211621. To this end, we conduct an empirical study over four large knowledge graphs in different server environments and configurations. As part of our analysis, we provide an extensive evaluation of the results and focus on the impact of the variables: triple pattern type, answer cardinality, page size, backend and the environment type on the response time. The results suggest that all variables impact on the measured response time and allow for deriving suggestions for TPF server configurations and query optimization.

TitelThe Semantic Web – ISWC 2018 - 17th International Semantic Web Conference, 2018, Proceedings
Redakteure/-innenKalina Bontcheva, Denny Vrandecic, Mari Carmen Suárez-Figueroa, Marta Sabou, Lucie-Aimee Kaffee, Elena Simperl, Valentina Presutti, Irene Celino
Herausgeber (Verlag)Springer Verlag
ISBN (Print)9783030006679
PublikationsstatusVeröffentlicht - 2018
Extern publiziertJa
Veranstaltung17th International Semantic Web Conference, ISWC 2018 - Monterey, USA/Vereinigte Staaten
Dauer: 8 Okt. 201812 Okt. 2018


NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band11137 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349


Konferenz17th International Semantic Web Conference, ISWC 2018
Land/GebietUSA/Vereinigte Staaten


Untersuchen Sie die Forschungsthemen von „Querying large knowledge graphs over triple pattern fragments: An empirical study“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren