Quasi-optimal a priori interface error bounds and a posteriori estimates for the interior penalty method

Christian Waluga, Barbara Wohlmuth

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

4 Zitate (Scopus)

Abstract

In this work, we show quasi-optimal interface e rror estimates for solutions obtained by the symmetric interior penalty discontinuous Galerkin method. It is proved that the numerical solution restricted to an interface converges with order |lnh| hk+1 under suitable regularity requirements, where the logarithmic factor is only present in the lowest order case, i.e., k = 1. For this case, we also derive and analyze two a posteriori error estimators which demonstrate that the jump terms of the discrete fluxes are not essential to obtain local efficiency and reliability. We support our analysis by numerical results and demonstrate that the interface approximation can be locally postprocessed to obtain discrete solutions of order h k+1/2 in the energy norm.

OriginalspracheEnglisch
Seiten (von - bis)3259-3279
Seitenumfang21
FachzeitschriftSIAM Journal on Numerical Analysis
Jahrgang51
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - 2013

Fingerprint

Untersuchen Sie die Forschungsthemen von „Quasi-optimal a priori interface error bounds and a posteriori estimates for the interior penalty method“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren