Quantum algorithms for solving ordinary differential equations via classical integration methods

Benjamin Zanger, Christian B. Mendl, Martin Schulz, Martin Schreiber

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

22 Zitate (Scopus)

Abstract

Identifying computational tasks suitable for (future) quantum computers is an active field of research. Here we explore utilizing quantum computers for the purpose of solving differential equations. We consider two approaches: (i) basis encoding and fixed-point arithmetic on a digital quantum computer, and (ii) representing and solving high-order Runge-Kutta methods as optimization problems on quantum annealers. As realizations applied to two-dimensional linear ordinary differential equations, we devise and simulate corresponding digital quantum circuits. We also implement and run a 6th order Gauss-Legendre collocation method on a D-Wave 2000Q system, showing good agreement with the reference solution. We find that the quantum annealing approach exhibits the largest potential for high-order implicit integration methods. As promising future scenario, the digital arithmetic method could be employed as an “oracle” within quantum search algorithms for inverse problems.

OriginalspracheEnglisch
FachzeitschriftQuantum
Jahrgang5
DOIs
PublikationsstatusVeröffentlicht - 13 Juli 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „Quantum algorithms for solving ordinary differential equations via classical integration methods“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren